# AI Studio SDK v2

# Getting Started

The AI Studio SDK was developed in Python and is designed to help data scientists to interact with AI Studio from their code, experiments and models. Through the SDK, you can create experiments, manage models, automate your machine learning pipeline and more.

The topics in this page:

# Prerequisites

In order to run the pip commands, Python (version 3.6 or later) should be installed on the system.

# Download and Install the AI Studio SDK

    # Install options

    When on self-hosted AI Studio environemnt, you can specify an option for cnvrgv2, to fit the object storage you intend to work with in your AI Studio environment.

    For Metacloud, we'll use the default installation without any option.

    Add the options to the install command as needed, you can add multiple options by separating with comma:

    pip install "cnvrgv2[options]"
    

    available options are:

    • azure - Install packages relevant for Azure storage client
    • google - Install packages relevant for GCP storage client
    • python3.6 - Install specific dependencies for python version 3.6

    # SDK Operations

    # Authenticating the AI Studio SDK

    You can can authenticate when credentials as parameters:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg(domain="https://app.cnvrg.io",
                  email="Johndoe@acme.com",
                  password="123123",
                  )
    

    Login command parameters

    Parameter Value Type Description required default
    domain Text AI Studio domain/url starting from http/s, excluding the organization slug e.g. https://app.cnvrgdomain.com/ Yes
    email Text User email Yes
    password Text authenticate using password Password or token are required
    token Text authenticate using the API Token Password or token are required
    organization Text AI Studio organization, this can be used when the user is a member of multiple organizations No First organization the user was added to

    For Metacloud and self-hosted AI Studio environments with SSO authentication, The user's API Token must be used instead of the Password, with the token parameter. the token can be retrieved from the user settings page, under API Token field: API Token

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg(domain="https://app.domain.metacloud.cnvrg.io",
                  email="Johndoe@acme.com",
                  token="YOUR API KEY")
    

    NOTE

    As a security measure, please do not put your credentials into your code.

    # Inside a AI Studio job scope

    The AI Studio SDK will already be initialized and authenticated with cnvrgv2 using the account that is logged in. You can start using AI Studio SDK functions immediately by running:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    

    # Authenticate using a local configuration file

    You can authenticate to the AI Studio SDK by creating a configuration file in your working directory

    • In your working directory create a directory called .cnvrg
      mkdir .cnvrg
      
    • Inside the directory .cnvrg create a configuration file named cnvrg.config
    • Edit the file and insert the following:
      check_certificate: <false/true>
      domain: <cnvrg_full_domain>
      keep_duration_days: null
      organization: <organiztion_name>
      token: <user_access_token>
      user: <user_email>
      version: null
      
    • Once you finish editing, save the file Now you can simply run the following in your code and it will log you in automatically:
    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    

    # Authenticate using environment variables

    You can authenticate to the AI Studio SDK by setting the following environment variable:

    • CNVRG_TOKEN: Your API token ( You can find it in your user settings page)
    • CNVRG_URL: Your cnvrg url that you use to view AI Studio through the browser, for example: https://app.prod.cnvrg.io
    • CNVRG_USER: Your email that you use to log in to AI Studio
    • CNVRG_ORGANIZATION: The organization name you use Once you set those environment variables, you can simply run the following and it will log you in automatically:
    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    

    NOTE

    The following documentation assume you have successfully logged in to the SDK and loaded the AI Studio object

    # User Operations

    # Verify you are logged in

    To get the logged in user object you can simply run:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    user = cnvrg.me()
    

    Once you have the user object you can get the user fields like: email, username, organizations, git_access_token, name, time_zone and more.

    For example:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    user = cnvrg.me()
    email = user.email
    

    # Set the default organization

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    cnvrg.set_organization("my-org")
    

    NOTE

    As a default, your current organization will be used

    # Project Operations

    # Create a new project

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.create("myproject")
    

    # Get the project's object:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    

    Once you have the project object you can get the project fields like: title, slug, git_url, git_branch, last_commit, num_files and more.

    For example:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    title = myproj.title
    

    NOTE

    You can also reference the current project from within a job scope:

    from cnvrgv2 import Project
    p = Project()
    

    # List all the projects in the organization:

    List all projects that the current user is allowed to view

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.list()
    

    To order the projects list by created_at run the following:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.list(sort="-created_at")
    

    TIP

    sort the list by: -key -> DESC | key -> ASC

    # Delete a project:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    myproj.delete()
    

    # Project File Operations

    # Clone the project to the current working directory

    myproj.clone()
    

    Available Parameters:

    Parameter type description required default
    commit string Sha1 of the commit to clone No latest
    override boolean re-clone even if the project already cloned No False
    current_dir boolean Whether to clone to the current dir or not No clone into a directory created with the project name
    fullpath_filter string Filter on path of file by part of the path No None
    threads integer number of threads that will be used in order to clone the project No 40

    # Download project's latest commit

    In order to fetch latest project commit to your local directory, use following command:

    myproj.download()
    

    WARNING

    The Project must be cloned first

    # upload all file changes from local project directory

    In order to upload all file changes to your cnvrg project, use following command:

    import os
    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    myproj.clone()
    os.chdir("myproject")
    myproj.upload()
    

    Available Parameters:

    Parameter type description required default
    message string The commit message No ""
    output_dir string will only sync the files in the output_dir specified No file changes from current dir
    git_diff boolean upload files from git diff output in addition to the given paths No Only upload files mentioned in the paths

    WARNING

    • This command must be used from a directory linked to a AI Studio project
    • Folder/file names must not contain special characters, which are - +?!@#$%&^*(){}[]

    # Upload specific files to a project

    myproj.put_files(paths=['/files_dir/file1.txt', '/files_dir/file2.txt'])
    

    Available Parameters:

    Parameter type description required default
    paths List The list of file paths that will be uploaded to the project Yes
    message string The commit message No ""
    override boolean Upload every file specified, even if it already exists in the latest commit No False
    force boolean Create a new commit with only the files included in the current upload No False
    fullpath_filter string Filter on path of file by part of the path No None
    git_diff boolean upload files from git diff output in addition to the given paths No False (Only upload files mentioned in the paths)

    NOTE

    • Files will get uploaded with their relative path as specified in the put_files command for example: myproj.put_files(paths=['/files_dir/file1.txt', '/files_dir/file2.txt']) file1.txt and file2.txt will be under files_dir directory in the Storage.
    • Reference to parent paths ('../../path') is not supported

    WARNING

    Folder/file names must not contain special characters, which are - +?!@#$%&^*(){}[]

    # Sync project

    Sync local file changes into the project using following command:

    myproj.sync()
    

    Available Parameters:

    Parameter type description required default
    message string The commit message No ""
    output_dir string will only sync the files in the output_dir specified No file changes from current dir
    git_diff boolean upload files from git diff output in addition to the given paths No Only upload files mentioned in the paths

    # Remove files from a project

    You can remove files from the project using following command:

    myproj.remove_files(paths='*', 
              message='This will delete everything!')
    

    Available Parameters:

    Parameter type description required default
    paths List The list of file/folder paths that will be deleted (regex and wilfcard are allowed) Yes
    message string The commit message No ""

    # List the project's content

    You can list all of the files and folders that are in the project:

    myproj.list_files()
    myproj.list_folders(commit_sha1='xxxxxxxxx')
    

    Available Parameters:

    Parameter type description required default
    commit_sha1 string Sha1 string of the commit to list the files from No None
    sort string Key to sort the list by (-key -> DESC / key -> ASC) No "-id"
    query_raw string query to be filtered with wild card (for example: 'filename*' or '*.png') No None

    # List project's commits

    You can list all of the files and folders that are in the project:

    myproj.list_commits(sort="-key -> DESC")
    

    # Update the project's settings

    You can change any of the project's settings by passing them as keyword arguments. For example, to change the project title

    myproj.settings.update(title='NewProjectTitle')
    

    To update project's collaborators

    myproj.settings.update(
        privacy='private',
        collaborators=['person1@email.com', 'person2@email.com']
    )
    

    Available Parameters:

    Parameter type description
    title string The name of the project
    default_image string The name of the image to set to be the project's default image
    default_computes List The list of the project's default compute template names
    privacy string The project's privacy set to either 'private' or 'public'
    mount_folders List Paths to be mounted to the docker container
    env_variables List KEY=VALUE pairs to be exported as environment variables to each job
    check_stuckiness boolean Idle experiment behaviour (Stop (False) or Restart (True))
    max_restarts int When "check_stuckiness" is True this sets how many times to repeatedly restart a single experiment each time it idles
    stuck_time int The duration (in minutes) that an experiment must be idle for before it is stopped or restarted
    autosync boolean Whether or not to preform periodic automatic sync
    sync_time int The interval (in minutes) between each automatic sync of jobs
    collaborators List The complete and updated list of collaborators' email addresses on the project
    command_to_execute string The project's default command to execute when starting a new job
    run_tensorboard_by_default boolean Whether or not to run Tensorboard by default with each launched experiment
    run_jupyter_by_default boolean Whether or not to run Jupyter by default with each launched experiment
    requirements_path string The default path to the requirements.txt file that will run with every job
    is_git boolean Whether if the project is linked to a git repo or not
    git_repo string The address of the git repo
    git_branch string The default branch
    private_repo boolean Whether the repo is private or not
    email_on_success boolean If email should be sent when the experiment finishes successfully
    email_on_error boolean If email should be sent when the experiment finishes with an error

    # Setup Git Integrations in project settings

    For a public git repository

    myproj.settings.update(is_git=True, git_repo="MyGitRepo", git_branch="MyBranch")
    

    For a private git repository using Oauth Token First make sure that the git Oauth Token is saved in your profile and then run

    myproj.settings.update(is_git=True, git_repo="PrivateGitRepo", git_branch="MyBranch", private_repo=True)
    

    To disable git integrations

    myproj.settings.update(is_git=False)
    

    # Configure secrets

    In order to edit an existing secret from your project's settings, or add a secret, use following command:

    myproj.settings.update_secret(secret_key="KEY", secret_value="VALUE")
    

    In order to delete secrets from your project's settings, use following command:

    ## Delete single secret
    myproj.settings.delete_secret("KEY")
    
    ## Delete multiple secrets
    myproj.settings.delete_secret(["KEY1","KEY2"])
    

    # Datasource Operations

    # Create a Datasource

    You can create a new Datasource in AI Studio:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    dsource = cnvrg.datasource.create(name="mybucket",storage_type=StorageTypes.S3)
    

    Available Parameters:

    Parameter type description required
    storage_type string The storage type (s3/Minio) Yes
    name string The name of the new Datasource Yes
    bucket_name string The name of the bucket Yes
    path string Path in the bucket No
    endpoint string Endpoint URL No
    region string The region determines where your data is physically stored Yes
    descripton string Typically includes information about the purpose and use of the bucket, along with any relevant configuration details Yes
    credentials dict Access key ID and Secret access key. In this format(for s3 compatibles): {'access_key_id': '***', "secret_access_key": "***"} Yes
    collaborators list The complete and updated list of collaborators email addresses for this Datasource No
    public bool Permissions: public or private No

    Note

    • Only an admin can create datasources.
    • By default, datasource is created as private.
    • For Minio, endpoint_url is mandatory

    # Get a Datasource

    To fetch a Dataset from AI Studio you can use:

    dsource = cnvrg.datasources.get(slug='datasource_slug')
    

    Note

    A non-admin user can only perform Get requests on Datasources they are explicitly assigned to, as well as on public Datasources accessible to all users.

    # Access Datasource attributes

    You can access the Datasource attributes by using regular dot notation:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    dsource = cnvrg.datasources.get(slug='dsource_slug')
    dsource.slug
    dsource.collaborators
    dsource.storage_type
    

    Available attributes:

    Attribute type description
    slug string The unique slug value of the Datasource
    storage_type string The bucket storage type for the Datasource
    name string The name of the Datasource
    admin string The admin of the Datasource (the creator)
    path string The path in the storage bucket
    endpoint string Endpoint URL
    region int The region determines where your data is physically stored
    public bool Permissions: public or private
    collaborators list The complete and updated list of collaborators email addresses for this Datasource

    Note

    • The AI Studio platform does not return credentials in response to GET requests for security and privacy reasons.
    • GET requests with a faulty slug should throw an error (pattern = r'^[a-z0-9-]+$').

    # List all existing Datasources

    You can list all the Datasources in the current organization:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    datasources = e2e_client.datasources.list(filter=filter, sort="id")
    for data_source in datasources:
        print(data_source.name)
    
    • Optional Filtering and Sorting
      In the context of dataset retrieval, both filtering and sorting are optional parameters that can enhance data management.
      Filtering allows users to narrow down results based on specific criteria. It operates similarly to dataset or project filters.
      For example: You can filter by storage type: StorageTypes.S3, StorageTypes.MINIO etc:
    s3_filter = {'operator': "AND",
                 'conditions':[{'key': "type", 'operator': "is", 'value': StorageTypes.S3}]}
    

    TIP

    Helper function: list_count returns the total count of Datasources

    cnvrg.datasources.list_count(filter=filter, sort="id")
    

    # Delete a Datasource

    To delete a Datasource call the delete() function on it's instance:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    dsource = cnvrg.datasources.get("slug")
    dsource.delete()
    

    # Adding and Removing Collaborators for a Private Datasource

    • Adding a Collaborator:
    dsource.add_collaborator('abc@efg.com')
    
    • Removing a Collaborator:
    dsource.remove_collaborator('abc@efg.com')
    

    While adding/removing Collaborators. An error will be received in the following cases:

    1. If user does not exist in the Organization.
    2. If user is Admin (it can’t be removed from Datasource).
    3. If user is not Admin and not assigned.
    4. Authorization error to perform action if current user is not Admin.

    # Datasource File Operations

    • For the following operations, if a path is set on the Datasource, the ALWAYS path will be added to the request.

    # List Files

    Lists the objects in the bucket path and returns a list of object keys:

    for file_name in datasource.list_objects():
      print(file_name)
    

    Note

    If the Datasource has a path, files will be listed for the given path only.

    # Files Downloader

    This is a helper function which downloads page by page for better performance.

    downloader = ds.get_files_downloader(page_size=page_size, max_workers=max_workers, destination_folder=dest_dir)
    for page in downloader.page_iterator:
        downloader.download_objects(page)
    
    • This will download page by page to the destination_dir.
    • If no destination is sent, it will download to the current directory.
    • Page size default is 100

    # Downloading single file

    Downloads a single file from the bucket.

    download_file(file_path, destination_path)
    
    • file_path: The path of the file you wish to download from the bucket. ( This is the actual file path in the bucket)
    • destination_path: The destination file path where the file will be downloaded. This might be a relative or absolute path. In any case, all the folders in the tree should be existing folders (if the path in a/b/c.txt -> a/ and b/ should be existing folders)

    Note

    If the datasource has a path in backet, the file_path is appended to the path.

    Example: For instance, if the datasource has ‘path1’ then : datasource.download_file("path_to/file.txt", "destination/directory/file_name.txt") this will download the following path from the bucket: "path1/path_to/file.txt"

    WARNING

    When downloading a file within a job (workspace or experiment), ensure that you save the datasource files to a designated folder /data. This precaution prevents the unintended upload of these files to project files during periodic synchronization or end-of-job synchronization processes.

    # File Upload

    Upload a single file to the bucket.

    upload_file(file_path, destination_path)
    
    • file_path: The path of the file you wish to upload to the bucket.
    • destination_path: The destination path in the bucket.

    Note

    If destination is not specified, the base name of the file is used.

    • For example:
    1. without destination:
    datasource.upload(file_path='abc.txt')
    

    this will be uploaded to ‘path1/abc.txt’ in the bucket

    BUCKET:

    path1/file1
    path1/file2
    path1/abc.txt

    1. with destination:
    datasource.upload(file_path='abc.txt', destination_path='myfolder/abc.txt')
    

    this will be uploaded to ‘path1/myfolder/abc.txt’ in the bucket

    BUCKET:

    path1/file1
    path1/file2
    path1/myfolder/abc.txt

    1. with duplicate destination:
    datasource.upload(file_path='abc.txt', destination_path='path1/myfolder/abc.txt')
    

    this will be uploaded to ‘path1/path1/myfolder/abc.txt’

    BUCKET:

    path1/file1
    path1/file2
    path1/path1//myfolder/abc.txt

    # Removing a file

    Removes a file from the bucket.

    datasource.remove_file(file_path)
    
    • file_path: The path of the file you wish to remove from the bucket.

    Note:

    If the datasource has a path, the file_path is appended to the file_path.

    # Cloning a datasource

    Clones the contents of the datasource to the current directory.

    datasource.clone(page_size=100, max_workers=os.cpu_count(), skip_if_exists=False, force=False)
    
    • page_size: The number of files to download per page.
    • max_workers: The maximum number of parallel workers for downloading files.
    • skip_if_exists: Whether to skip cloning if the directory already exists.
    • force: Whether to force cloning by overwrite the existing directory.

    Important Notes:

    • If skip_if_exists is True and the directory exists, the method will return without cloning.
    • If force is True and the directory exists, it will be removed before cloning.
    • If the datasource has a path, files will be listed for the given path only.

    # Datasources Additions to Jobs

    The Datasource will be adding to the job at Workspace or Experiment startup. When a Datasource is attached to a job, it will be cloned BEFORE the job starts. The datasource will be cloned to the /data directory

    # For Worcspaces:

    p = cnvrg.projects.get('myproject')
    p.clone()
    # (create workspace must be done within a project context)
    os.chdir(p.slug)
    w = p.workspaces.create(
            title='My Workspace',
            templates=["small","medium"],
            overriding_datasources=[datasources_slugs_list],
            datasources=[datasources_slugs_list]) 
        )
    

    The params are useful in the case the datasource may have already been clone (pvc etc)

    • datasources: For these Datasources, if the Datasource has already been cloned it will be skipped.
    • overriding_datasources: For these Datasources, if the Datasource has already been cloned, the folder will be deleted and the Datasource will be cloned again

    # For Experiments:

    p = cnvrg.projects.get('myproject')
    p.clone()
    # (create experiment must be done within a project context)
    os.chdir(p.slug)
    e = p.experiments.create(
            title="my new exp",
            template_names=["small","medium"],
            command="python3 test.py",
            sync_before=False,
            sync_after=False,
            overriding_datasources=[datasources_slugs_list],
            datasources=[datasources_slugs_list]) 
        )
    

    The params are useful in the case the datasource may have already been clone (pvc etc)

    • datasources: For these Datasources, if the Datasource has already been cloned it will be skipped.
    • overriding_datasources: For these Datasources, if the Datasource has already been cloned, the folder will be deleted and the Datasource will be cloned again

    Validations:

    • If the Datasource does not exist: throw an error and do not create job.
    • If the current user is not assigned to one of the Datasources: it throws an error and does not create the job.

    # Datasources attached to the job check:

    To retrieve and display the datasources associated with a specific job within the experiment and workspace contexts:

    print(experiment.datasources)
    
    print(workspace.datasources)
    

    # Dataset Operations

    # Create a Dataset

    You can create a new Dataset in AI Studio:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.create(name="MyDataset",category='general')
    

    Available Parameters:

    Parameter type description required default
    name string The name of the new Dataset Yes
    category string The type of dataset. options are: general, images, audio, video, text, tabular No "general"

    # Dataset ID

    In some methods, you will need to use a dataset ID. The dataset ID is the unique name of the dataset, as seen in its URL.

    For example, if you have a dataset that lives at: https://app.cnvrg.io/my_org/datasets/mydataset, the dataset ID is mydataset.

    # Get a Dataset

    To fetch a Dataset from AI Studio you can use:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.get('dataset-id')
    

    # Access Dataset attributes

    You can access the Dataset attributes by using regular dot notation:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.get('dataset-id')
    ds.slug
    ds.members
    ds.last_commit
    

    Available attributes:

    Attribute type description
    slug string The unique slug value of the Dataset
    size int The size of the Dataset
    title int The name of the Dataset
    members List List of collaborators on this Dataset
    category string The data structure category
    description string Description of the Dataset
    num_files int The number of files in the Dataset
    last_commit string The last commit on this Dataset
    current_commit string The current commit on this Dataset object

    # List all existing Datasets

    You can list all the datasets in the current organization:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.list(sort="-created_at")
    

    TIP

    sort the list by: -key -> DESC | key -> ASC

    # Delete a Dataset

    To delete a Dataset call the delete() function on it's instance:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.get("dataset-id")
    ds.delete()
    

    # Dataset File Operations

    # Clone the dataset to the current working directory

    In order to clone dataset into your working directory, use following command:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.get('dataset-id')
    ds.clone()
    

    Available Parameters:

    Parameter type description required default
    commit string Sha1 of the commit to clone No latest
    override boolean re-clone even if the dataset already cloned No False
    query_slug string slug of a query to clone No None
    fullpath_filter string Filter on path of file by part of the path No None
    use_cached boolean whether to use nfs cache link or not No False
    threads integer number of threads that will be used in order to clone the project No 40
    check_disk_space boolean check there is enough space to clone dataset. clone won't execute if there isn't enough available space (leaving at least 5% of free space after clone) No True

    TIP

    The dataset will be cloned into a directory with its name, and the directory will be associated with the AI Studio dataset

    # Download dataset latest commit

    In order to fetch dataset's data, use following command:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.get('dataset-id')
    ds.download()
    

    WARNING

    The Dataset must be cloned first

    # Upload files to a dataset

    # upload all file changes from local dataset directory

    Upload all file changes from remote directory using following commad:

    import os
    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.get('dataset-id')
    ds.clone()
    os.chdir("dataset-id")
    ds.upload()
    

    Available Parameters:

    Parameter type description required default
    message string The commit message No ""

    WARNING

    • This command must be used from a directory linked to a AI Studio Dataset
    • Folder/file names must not contain special characters, which are - +?!@#$%&^*(){}[]

    # upload specific files from remote directory

    ds.put_files(paths=['/files_dir/file1.txt', '/files_dir/file2.txt'])
    

    Available Parameters:

    Parameter type description required default
    paths List The list of file paths that will be uploaded to the dataset Yes
    message string The commit message No ""
    override boolean Upload every file specified, even if it already exists in the latest commit No False
    force boolean Create a new commit with only the files included in the current upload No False
    git_diff boolean upload files from git diff output in addition to the given paths No Only upload files mentioned in the paths

    WARNING

    Folder/file names must not contain special characters, which are - +?!@#$%&^*(){}[]

    NOTE

    If a folder is given all the relevant files in that folder (that answers to the regex pattern) will be uploaded.

    # Remove files from a dataset

    You can remove files from the dataset:

    ds.remove_files(paths='*', 
              message='This will delete everything!')
    

    Available Parameters:

    Parameter type description required default
    paths List The list of file/folder paths that will be deleted (regex and wildcard are allowed) Yes
    message string The commit message No ""

    NOTE

    • When deleting files from a dataset paths parameter can be both a list of file paths or a string pattern like '*'
    • In order to delete an enitre folder, specify its name followed by / for example: paths=["folder/"]

    # List Dataset content

    You can list all of the files and folders that are in the dataset:

    ds.list_files(query_raw='{"color": "yellow"}',
                  sort='-id')
    ds.list_folders(commit_sha1='xxxxxxxxx')
    

    Available Parameters:

    Parameter type description required default
    commit_sha1 string Sha1 string of the commit to list the files from No None
    query string Query slug to list files from No None
    query_raw string Raw query to list files according to Query language syntax No None
    sort string Key to sort the list by (-key -> DESC / key -> ASC) No "-id"

    # Dataset Commits

    Every Dataset in AI Studio may contain multiple data commits that you can interact with in the following manner:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.get("dataset-id")  # Get the Dataset object
    
    # Get A specific commit by its sha1 value
    cm = ds.get_commit('xxxxxxxxx')
    # OR list all available commits
    commits = [cm for cm in ds.list_commits()]
    
    # Last commits is available as attributes
    last_commit = ds.last_commit
    

    # Checking Dataset Commit Indexing Status

    To ascertain whether a dataset commit has completed its indexing process, execute the following code snippet:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.get('dataset-id')
    ds.get_commit('commit_sha1').is_indexed
    

    # Dataset Caching

    # Cache commit

    In order to cache a dataset commit, use following command:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.get("dataset-id")
    dc= ds.get_commit("sha1")
    dc.cache_commit('nfs-name')
    

    NOTE

    NFS connection needs to be configured in order to cache dataset commmits

    # Uncache Commit

    In order to clear cached commit, use following command:

    dc.clear_cached_commit('nfs-name')
    

    # Dataset Queries

    You can create and use queries directly from AI Studio SDK to filter and use the Dataset exectly the way you want it by using Query language syntax

    # Create a new Query:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ds = cnvrg.datasets.get("MyDataset")  # Get the Dataset object
    ds.queries.create(name='OnlyPngFiles',
                      query='{"fullpath":"*.png"}',
                commit_sha1='xxxxxxxxx')
    

    Available Parameters:

    Parameter type description required default
    name string The name of the query Yes
    query string The query string according to Query language syntax Yes
    commit_sha1 string The sha1 value of the commit that this query will be based on No None

    # List all of the Dataset queries:

    ds.queries.list(sort="-created_at")
    

    TIP

    sort the list by: -key -> DESC | key -> ASC

    # Get a specific query

    q = ds.queries.get('slug')
    

    # Delete a query

    q.delete()
    

    # Workspaces operations:

    # Workspace ID

    In some methods, you will need to use the workspace ID(slug). The ID(slug) can be found in the last part of the workspace's URL .

    For example, if you have a dataset that lives at: https://app.cnvrg.io/my_org/my_project/notebook_sessions/show/xaqn2mozyuivzwd7ajso, the ID is xaqn2mozyuivzwd7ajso.

    # Fetch the workspace object

    Once you have the workspace'd id(slug) you can fetch it with the 'get' command:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    ws = myproj.workspaces.get("workspace-id")
    

    NOTE

    You can also reference the current running workspace from within its job scope:

    from cnvrgv2 import Workspace
    ws = Workspace()
    

    # Create a new workspace

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    ws = myproj.workspaces.create(title="My Workspace", 
                                  templates=["small","worker.medium"], 
                                  notebook_type='jupyterlab')
    

    If no parameters are provided, then the default values are used to further customize the created workspace you pass use the following parameters

    Available Parameters:

    Parameter type description required default
    title string The name of the workspace No None
    templates list A list containing the names of the desired compute templates. when specifiying a compute template which is not on the default resource, add the name of the resouce followed by name of the template. for example: "intel.small" No project's default template
    notebook_type string The notebook type (options are: "jupyterlab", "r_studio", "vscode") No 'jupyterlab'
    volume string The volume that will be attached to the workspace No None
    datasets list A list of datasets to be connected and used in the workspace No None
    image object Object of the image to be used for the workspace environment. for example: image=cnvrg.images.get(name="cnvrg", tag="v6.0") No project's default image
    queue string Name of the queue to run on No default queue

    # Access workspace attributes

    You can access the workspace attributes by using regular dot notation:

    ws_slug = ws.slug
    ws_title = ws.title
    ws_datasets = ws.datasets
    ws_notebook = ws.notebook_type
    

    # Sync workspace's file changes

    To trigger sync in the running workspace:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ws = myproj.workspaces.get("workspace-slug")
    ws.sync_remote()
    

    Available Parameters:

    Parameter type description required default
    commit_msg string The commit message No None

    # Stop a running workspace

    Stop a running workspace and sync it (the default is sync=False):

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    ws = myproj.workspaces.get("workspace-slug")
    ws.stop(sync=True)
    

    Stop multiple workspaces at once:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    myproj.workspaces.stop(['workspace-slug1','workspace-slug2'],sync=True)
    

    # Start a stopped workspace

    Start a stopped workspace:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    ws = myproj.workspaces.get("workspace-slug")
    ws.start()
    

    # List all of the workspaces

    You can list all the workspaces in the current project, as well as sort them by a key in ASC or DESC order:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    wslist = myproj.workspaces.list(sort="-created_at")
    

    TIP

    sort the list by: -key for DESC or key for ASC

    # Delete workspaces

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    ws = myproj.workspaces.get("workspace-slug")
    ws.delete()
    

    Delete multiple workspaces by listing their slugs:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    myproj.workspaces.delete(['workspace-slug1','workspace-slug2'])
    

    # Operate a Tensorboard

    Start a Tensorboard session for an ongoing workspace

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    ws = myproj.workspaces.get("workspace-slug")
    ws.start_tensorboard()
    

    Get the Tensorboard url:

    ws.tensorboard_url
    

    Stop the Tensorboard session:

    ws.stop_tensorboard()
    

    # Experiment Operations

    # Experiment slug

    In many commands, you will need to use an experiment slug. The experiment slug can be found in the URL for the experiment.

    For example, if you have an experiment that lives at: https://app.cnvrg.io/my_org/projects/my_project/experiments/kxdjsuvfdcpqkjma5ppq, the experiment slug is kxdjsuvfdcpqkjma5ppq.

    # Fetch the experiment object

    Once you have the experiment's slug you can fetch it with the 'get' command:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    e = myproj.experiments.get("experiment-slug")
    

    NOTE

    You can also reference the current running experiment from within its job scope:

    from cnvrgv2 import Experiment
    e = Experiment()
    print(e.slug) # Get the current running experiment's slug
    

    # Create a new experiment

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    e = myproj.experiments.create(title="my new exp", 
                                  templates=["medium", "small"], 
                                  command="python3 test.py")
    

    Available Parameters:

    Parameter type description required default
    title string The name of the experiment No None
    templates List list of the compute templates to be used in the experiment (if the cluster will not be able to allocate the first template, then it will try the one after and so on..) No None
    local boolean whether or not to run the experiment locally No False
    local_arguments dict If local experiment and command is a function, local_arguments is a dictionary of the arguments to pass to the experiment's function No None
    command string the starting command for the experiment (example: command='python3 train.py') Yes
    datasets List A list of dataset objects to use in the experiment No None
    volume Volume Volume to be attached to this experiment No None
    sync_before boolean Wheter or not to sync the environment before running the experiment No True
    sync_after boolean Wheter or not to sync the environment after the experiment has finished No True
    image object The image to run on (example: image=cnvrg.images.get(name="cnvrg", tag="v5.0") No project's default image
    git_branch string The branch to pull files from for the experiment, in case project is git project No None
    git_commit string The specific commit to pull files from for the experiment, in case project is git project No None
    queue string Name of the queue to run on No default queue

    # Create a grid of experiments

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    e = myproj.experiments.create_grid(title="my new grid",  
                                  command="python3 train.py", 
                                  parameters=[{'key': 'learning_rate', 'type': 'discrete', 'values': [0.1, 0.01]}])
    

    Available Parameters:

    Parameter type description required default
    title string The name of the experiment No None
    templates List list of the compute templates to be used in the experiment (if the cluster will not be able to allocate the first template, then it will try the one after and so on..) No None
    parameters list of dict List of dictioneries of parameters to be passed to the grid. syntax is parameters=[{"key":"KEY", "type":"TYPE","value":"VALUE"},{..}]. example bellow Yes
    command string the starting command for the experiment (example: command='python3 train.py') Yes
    datasets List A list of dataset objects to use in the experiment No None
    volume Volume Volume to be attached to this experiment No None
    sync_before boolean Wheter or not to sync the environment before running the experiment No True
    sync_after boolean Wheter or not to sync the environment after the experiment has finished No True
    image object The image to run on (example: image=cnvrg.images.get(name="cnvrg", tag="v5.0") No project's default image
    git_branch string The branch to pull files from for the experiment, in case project is git project No None
    git_commit string The specific commit to pull files from for the experiment, in case project is git project No None
    queue string Name of the queue to run on No default queue

    Example of different types or parameters:

    import yaml
    params = """
        - key: "learning_rate"
          type: "discrete" # An array of numerical values
          values: [0.1, 0.01]
    
        - key: "kernel"
          type: "categorical" # An array of string values
          values: ["linear", "rbf"]
    
        - key: "epochs"
          type: "integer"
          min: 10 # inclusive
          max: 20 # not inclusive
          scale: "linear"
          steps: 2 # The number of linear steps to produce.
    """
    e = myproj.experiments.create_grid(command="python3 train.py", parameters=yaml.safe_load(params))
    
    
    ### OR 
    e = myproj.experiments.create_grid(command="python3 train.py", parameters=[{'key': 'learning_rate', 'type': 'discrete', 'values': [0.1, 0.01]}, {'key': 'kernel', 'type': 'categorical', 'values': ['linear', 'rbf']}, {'key': 'epochs', 'type': 'integer', 'min': 10, 'max': 20, 'scale': 'linear', 'steps': 2}])
    

    # Get an existing experiment

    You can get the experiment object by using the experiment's slug:

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    e = myproj.experiments.get("experiment-slug") 
    

    # list all experiment in the project

    To get a list of all of the experiments in the project:

    experiments = [e for e in myproj.experiments.list(sort="-created_at")]
    

    TIP

    sort the list by: -key for DESC or key for ASC

    # Delete experiment

    You can delete a Experiment from a project by its slug value

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    e = myproj.experiments.get("experiment-slug")
    e.delete()
    
    # Do bulk delete on multiple experiments
    myproj.experiments.delete(['experiment-slug1','experiment-slug2']) 
    

    Available Parameters:

    Parameter type description required default
    delete_artifacts boolean Delete experiment's artifacts from storage No False

    # Stop a running experiment

    Stop a running Experiment by passing its slug value (also All Experiment must be running)

    from cnvrgv2 import Cnvrg
    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    e = myproj.experiments.get("experiment-slug")
    e.stop()
    
    # Do bulk stop on multiple experiments
    myproj.experiments.stop(['experiment-slug1','experiment-slug2'])
    

    Available Parameters:

    Parameter type description required default
    sync boolean sync experiment's file changes before stopping No True

    # Get experiment's system utilization

    You can access the experiment's system resources usage data. For example, let's get the 5 last records for memomry utilization percentage:

    utilization = e.get_utilization()
    utilization.attributes['memory']['series'][0]['data'][-5:]  
    [[1626601529000, 7.7], [1626601559000, 19.85], [1626601589000, 48.05], [1626601620000, 49.26]]
    

    NOTE

    The data syntax is [unix_timestamp, metric]

    # Track an experiment manually

    You can initialize an empty Experiment in AI Studio:

    cnvrg = Cnvrg()
    myproj = cnvrg.projects.get("myproject")
    e = myproj.experiments.init("experiment-title") 
    

    Now that the Experiment is initialized, its status is ONGOING and you can preform operations from within your code like with regular AI Studio Experiments in order to track

    If you have initialized an Experiment object, you should conclude the experiment with the e.finish() command.

    To conclude an experiment object:

    exit_status = 0
    e.finish(exit_status=exit_status)
    

    NOTE

    Options for exit_status: 0 for success, -1 for aborted, 1 and higher is error

    # Examples

      # Metadata operations on experiments

      Add logs to a running experiment:

      from datetime import datetime
      e.log("my first log")
      e.log(["my first log","my second log"])
      

      Available Parameters:

      Parameter type description required default
      logs array Logs to be added to the experiment Yes
      timestamp timestemp timestemp to be added on No UTC Now
      log_level string Log level. options are: "output", "error" ,"info", "warning" No "info"

      # Get the experiment's last 40 logs:

      logs = e.logs()
      for i in logs.attributes['logs']:
          print(i['message'])
      

      Available Parameters:

      Parameter type description required default
      offset integer offset of logs chunk No -1 (latest)

      # Upload artifacts

      You can add local files to the Experiments artifacts and create a new commit for it:

      paths = ['output/model.h5']
      e.log_artifacts(paths=paths)
      

      Available Parameters:

      Parameter type description required default
      paths list list of paths of artifacts to save Yes
      git_diff boolean upload files from git diff output in addition to the given paths No False
      work_dir string path to files. For example: when needed files are in dir ROOT/B. instead of sending paths B/., set working_dir="B", and send path as . No ROOT

      Files will be uploaded to the experiment as output artifacts.

      NOTE

      Log only images available in the choosen path with log_images(file_paths=['*']) Images logged with this function will be displayed in the "Visuals" tab in the experiment's show page

      # Fetch a list of experiment's artifacts:

      In order to see existing artifacts of your experiment, use following command:

      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      e = myproj.experiments.get("experiment-slug") 
      a = e.list_artifacts()
      for i in a:
          print(i.fullpath)
      

      # Download the experiment's artifacts

      You can download the artifacts to your local working directory

      e.pull_artifacts(wait_until_success=True, poll_interval=5)
      

      Available Parameters:

      Parameter Type Description required default
      wait_until_success boolean Wait until current experiment is done before pulling artifacts No False
      poll_interval int If wait_until_success is True, poll_interval represents the time between status poll loops in seconds No 10

      # Merge experiment's commit into project files

      In order to merge experiments artifacts into project's master branch, use following command:

      e.merge_to_master()
      

      Available Parameters:

      Parameter Type Description required default
      commit_sha1 string Specific commit to be merges No latest commit created by the experiment

      # Download the experiment's artifacts

      You can download the artifacts to your local working directory

      e.pull_artifacts(wait_until_success=True, poll_interval=5)
      

      Available Parameters:

      Parameter Type Description required default
      wait_until_success boolean Wait until current experiment is done before pulling artifacts No False
      poll_interval int If wait_until_success is True, poll_interval represents the time between status poll loops in seconds No 10

      # Merge experiment's commit into project files

      In order to merge experiments artifacts into project's master branch, use following command:

      e.merge_to_master()
      

      Available Parameters:

      Parameter Type Description required default
      commit_sha1 string Specific commit to be merges No latest commit created by the experiment

      # Create a Tag

      To log a parameter to a running experiment, use:

      e.log_param("key","value")
      

      Parameters can be seen in the "Config and Metrics" section of the experiment's show page

      # Charts

      You can create various charts by using the sdk, for example create a linechart showing the experiments loss:

      from cnvrgv2 import Cnvrg, LineChart
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      e = myproj.experiments.get("exp-slug")
      
      loss_vals = []
      # experiment loop:
      for epoch in range(8):
          loss_vals.append(loss_func())
      
      # attach the chart to the experiment
      loss_chart = LineChart('loss')
      loss_chart.add_series(loss_vals, 's1')
      e.log_metric(loss_chart)
      

      You will immediately see the chart on the experiment's page:

      WARNING

      chart_name can't include "/"

      # Update existing chart:

      Use following command to update existing chart with added values:

      e.update_chart(key="loss",data=[1,2,3,4],series_name='s1')
      

      You can create all different types of charts:

      # Heatmap:

      In case of Heatmap, list of tuples that form a matrix. e.g, 2x2 matrix: [(0.5,1),(1,1)]

      from cnvrgv2 import Heatmap
      heatmap_chart = Heatmap('heatmap_example2',
                              x_ticks=['x', 'y'], y_ticks=['a', 'b'], min=0,max=10)
      heatmap_chart.add_series([(0.5,1),(1,1)])
      e.log_metric(heatmap_chart)
      

      Example heat map

      Typing information: x_ticks and y_ticks must be a List and matrix is a list of tuples in struct (x,y,z). color_stops is optional and is a List of Lists with size 2, where the nested first value is a float 0 <= X <= 1, and the second value is the hex value for the color to represent matrix values at that point of the scale. min and max are optional and should be numbers corresponding to the minimum and a maximum values for the key (scaling will be done automatically when these values are not submitted).

      Each struct corresponds to a row in the matrix and to a label from the y_ticks list. The matrix is built from the bottom up, with the first struct and y_tick at the bottom edge. Each value inside the struct corresponds to each x_tick. Using steps and groups allow you to submit the same heatmap across different steps and visualize it in a single chart with a slider to easily switch between the charts. step should be an integer and group should be a string.

      Steps and groups:

      Using steps and groups allow you to submit heatmaps across different steps and visualize it in a single chart with a slider to easily move between the steps. step should be an integer and group should be a string. The group parameter requires the step parameter.

      Animated Heatmap

      # Bar chart:

      • Single bar:

        from cnvrgv2 import BarChart
        bar_chart = BarChart('bar_example', x_ticks=['bar1', 'bar2'])
        bar_chart.add_series([1, 2],'s1')
        e.log_metric(bar_chart)
        
      • Multiple bars:

        from cnvrgv2 import BarChart
        bar_chart = BarChart('bar_example1', x_ticks=['bar1', 'bar2'])
        bar_chart.add_series([1, 2, 3],'s2')
        bar_chart.add_series([3, 4],'s3')
        e.log_metric(bar_chart)
        

      Example bar chart

      The x_ticks list will populate the labels for the bars, and the corresponding series values will dictate the value of the bar for that category. min and max are optional and are numbers that correspond the lower and upper bounds for the y values. Optionally, you can set each bar to be a specific color using the colors list of hex values, with each hex value corresponding to each x value.

      Steps and groups:

      Using steps and groups allow you to submit bar charts across different steps and visualize it in a single chart with a slider to easily move between the steps. step should be an integer and group should be a string. The group parameter requires the step parameter.

      Animated bargraph

      # Operate a Tensorboard

      Start a Tensorboard session for an ongoing experiment

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      e = myproj.experiments.get("experiment-slug")
      e.start_tensorboard()
      

      Get the Tensorboard url:

      e.tensorboard_url
      

      Stop the Tensorboard session:

      e.stop_tensorboard()
      

      # Flow Operations

      Flows can be created and run from any environment using the SDK. Creating flows requires using a flow configuration YAML file.

      # Create a Flow

      You can use a flow YAML to create a flow inside a project. You can use either the absolute path to a YAML file or include the YAML content directly. Use the flows.create command:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      proj = cnvrg.projects.get("myproject")
      flow = proj.flows.create(yaml_path='PATH/TO/YAML')
      

      Available Parameters:

      Parameter type description required default
      yaml_path string A path to the YAML configuration file No None
      yaml_string string string of the yaml to create flow with No None

      For example:

      flow = """
      ---
      flow: Flow 1
      recurring: 
      next_run_utc: 
      tasks:
      - input: python3 train.py
        params: []
        computes:
        - mini
        image: cnvrg:v5.0
        description: Task 1
        type: exec
        git_commit: 
        git_branch: 
        mount_folders: []
        icon: 
        output_dir: output
        confirmation: false
        standalone_mode: false
        notify_on_error: false
        notify_on_success: false
        emails: []
        objective: 
        objective_goal: 
        objective_function: min
        max_jobs: -1
        parallel_jobs: -1
        algorithm: GridSearch
        queue_slug: c9rlzkv5zazkdyxg7esg
        title: Task 1
        top: 50
        left: 50
        conditions: []
        commit: 908eea8c3aaa5059c55b4e3716a5bd96431c06b0
      relations: []
      """
      
      myproj.flows.create(yaml_string=flow)
      

      # Access Flow attributes

      You can access the Flow's attributes by using regular dot notation:

      Example:

      >>> flow.title
      'Training Task'
      

      # Flow Attributes:

      Parameter type description
      title string The name of the Flow
      slug string The flow slug value
      created_at datetime The time that the Flow was created
      updated_at datetime The time that the Flow was last updated
      cron_syntax string The schedule Cron expression string (If the Flow was scheduled)
      webhook_url string
      trigger_dataset string A dataset that with every change will trigger this Flow

      # Flow slug

      In some commands, you will need to use an Flow slug. The Flow slug can be found in the Flow page URL.

      For example, if you have an Flow that lives at: https://app.cnvrg.io/my_org/projects/my_project/flows/iakzsmftgewhpxx9pqfo, the Flow slug is iakzsmftgewhpxx9pqfo.

      # Get a Flow

      Get an existing Flow by passing its slug value or title

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      proj = cnvrg.projects.get("myproject")
      flow = proj.flows.get("slug/title")
      

      # List Flows

      You can list all existing flows:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      proj = cnvrg.projects.get("myproject")
      flows = proj.flows.list()
      for flow in flows:
          print(flow.title)
      

      # Run a Flow

      To run The Flow's latest version:

      flow.run()
      

      # Update Flow

      You can update the existing Flow's title:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      proj = cnvrg.projects.get("myproject")
      flow = proj.flows.get("slug/title")
      flow.update(title="My Updated Flow")
      

      # Delete Flow

      You can delete an existing Flow:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      proj = cnvrg.projects.get("myproject")
      flow = proj.flows.get("slug/title")
      flow.delete()
      

      Or multiple Flows at once by listing all of the Flows slug values:

      proj.flows.delete(["FLOW1_SLUG", "FLOW2_SLUG"])
      

      # Schedule a Flow

      You can make the Flow run on schedule by using Cron expression syntax.

      # Set a new schedule:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      proj = cnvrg.projects.get("myproject")
      flow = proj.flows.get("slug/title")
      flow.set_schedule("* * * * *")  # Run every minute
      

      Disable it with:

      flow.clear_schedule()
      

      # Trigger webhook

      You can create a webhook that will trigger the Flow run.

      Toggle it on/off by setting the toggle parameter to True or False:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      proj = cnvrg.projects.get("myproject")
      flow = proj.flows.get("slug/title")
      flow.toggle_webhook(True)
      

      Get the webhook url:

      flow.webhook_url
      

      NOTE

      If you just toggled the webhook use flow.reload() before fetching the webhook_url

      # Toggle dataset update trigger

      You can toggle the option to trigger on dataset update on/off, by setting the toggle parameter to True or False:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      ds = cnvrg.datasets.get("myds")
      proj = cnvrg.projects.get("myproject")
      flow = proj.flows.get("slug/title")
      
      flow.toggle_dataset_update(True, cnvrg.datasets.get("dataset-slug"))
      

      # Flow versions

      Every Flow have multiple versions and you can access them:

      List all the flow versions:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      proj = cnvrg.projects.get("myproject")
      flow = proj.flows.get("slug/title")
      flow_versions = flow.flow_versions.list()
      for fv in flow_versions:
          print(fv.title)
      

      Get a specific flow version object by slug or title:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      proj = cnvrg.projects.get("myproject")
      flow = proj.flows.get("slug/title")
      flow_version = flow.flow_versions.get("Version 1")
      

      Get info of a flow version status:

      info = flow_version.info()
      

      Stop a running Flow version:

      flow_version.stop()
      

      #

      # Endpoint Operations

      # Create Endpoint

      Use the following command to create a new endpoint:

      from cnvrgv2 import Cnvrg
      from cnvrgv2 import EndpointKind, EndpointEnvSetup
      cnvrg = Cnvrg()
      proj = cnvrg.projects.get("myproject")
      ep = proj.endpoints.create(title="myendpoint",
                     templates=["small","medium"],
                     kind=EndpointKind.WEB_SERVICE, 
                     file_name="predict.py",
                     stream=True,
                     function_name="predict")
      

      Available Parameters:

      Parameter type description required default
      title string Name of the Endpoint Yes
      kind int The kind of endpoint to deploy. options are: [WEB_SERVICE, STREAM, BATCH, TGI]) No EndpointKind.WEB_SERVICE
      templates List List of template names to be used No Default compute from project's settings
      image Image Image object to create endpoint with No Default image from project's settings
      file_name string The file containing the endpoint function Yes
      function_name string The name of the function the endpoint will route to Yes
      prep_file string The file containing the preprocess functions No None
      prep_function string The name of the preprocess function No None
      commit string Commit sha1 to use No latest
      git_branch string Git branch to use No Default git branch from project's settings
      git_commit string Git commit to use No latest
      desired_percentage integer Traffic ratio for canary rollout No 100 (full transition)
      gunicorn_config List Gunicorn configurations in the following format: ["key=value", "key=value"] No None
      flask_config List flask configurations in the following format: ["key=value", "key=value"] No None
      input_file boolean Does endpoint accepts file No False
      env_setup string The interpreter to use. options: [PYTHON2, PYTHON3, PYSPARK, RENDPOINT]) No EndpointEnvSetup.PYTHON3
      kafka_brokers List List of kafka brokers No None
      kafka_input_topics List List of topics to register as input No None
      queue List Name of the queue to run this job on No None
      kafka_output_topics List List of topics to register as input No None
      model_id string Name of the model id No None
      stream boolean Does endpoint returns stream output No False

      NOTE

      Stream output is supported only at web service endpoints.

      # Endpoint slug

      In many commands, you will need to use an endpoint slug. The endpoint slug can be found in the URL for the endpoint.

      For example, if you have an endpoint that lives at: https://app.cnvrg.io/my_org/projects/my_project/endpoints/show/j46mbomoyyqj4xx5f53f, the endpoint slug is j46mbomoyyqj4xx5f53f.

      # Get Endpoint object

      You can get Endpoints by passing their slug value:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      proj = cnvrg.projects.get("myproject")
      ep = proj.endpoints.get('slug')
      

      NOTE

      You can also reference the current running endpoint from within its job scope:

      from cnvrgv2 import Endpoint
      ep = Endpoint()
      

      # List Endpoints

      ep_list = proj.endpoints.list(sort='-created_at')  # Descending order
      

      TIP

      sort the list by: -key -> DESC | key -> ASC

      # Stop running Endpoints

      Stop a running Endpoint using following command:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      ep = myproj.endpoints.get("endpoint-slug")
      ep.stop()
      
      # Do bulk stop on multiple endpoints
      myproj.endpoints.stop(['endpoint-slug1','endpoint-slug2'])
      

      # Start a stopped Endpoint

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      ep = myproj.endpoints.get("endpoint-slug")
      ep.start()
      

      # Delete Endpoints

      You can delete a Endpoint from a project by its slug value

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      ep = myproj.endpoints.get("endpoint-slug")
      ep.delete()
      
      # Do bulk delete on multiple endpoints
      myproj.endpoints.delete(['endpoint-slug1','endpoint-slug2']) 
      

      # Endpoint Attributes

      You can access the Endpoint attributes by using regular dot notation, for example:

      >>> ep.api_key
      '43iVTWTp55N7p62iSZYZLyuk'
      
      Attribute type description
      title string Name of the Endpoint
      kind int The kind of endpoint (webservice, stream, batch)
      updated_at string when was this Endpoint last updated
      last_deployment dict details about the Endpoint's last deployment
      deployments List list of dictionaries containing details about all of the Endpoint's deployments
      deployments_count int The number of deployments that the Endpoint had
      templates List List of compute templates that are assigned to the Endpoint
      endpoint_url string The Endpoint's requests URL
      url string The Endpoint's base URL
      current_deployment dict The active deployment's data
      compute_name string The name of the current compute template that is being used for the Endpoint to run
      image_name string Name of the Endpoint's environment that is currently deployed
      image_slug string The slug value of the Endpoint's deployed image
      api_key string API key to access the Endpoint securely
      created_at string The time that this endpoint was created
      max_replica int Maximum number of pods to run this endpoint on
      min_replica int Minimum number of pods0 to run this endpoint on
      export_data boolean whether to export data or not
      conditions dict conditions attached to this Endpoint and trigger a Flow/email every time one of them is met

      # Update The Endpoint's version

      You can deploy a new version to the Endpoint and change some of its settings, for example:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      ep = myproj.endpoints.get("endpoint-slug") 
      ep.update_version(file_name="new_predict.py", commit="q7veenevzd83rewxgncx")
      

      Available Parameters:

      Parameter type description required default
      title string Name of the Endpoint Yes
      kind int The kind of endpoint to deploy. options are: [WEB_SERVICE, STREAM, BATCH, TGI]) No EndpointKind.WEB_SERVICE
      templates List List of template names to be used No Default compute from project's settings
      image Image Image object to create endpoint with No Default image from project's settings
      file_name string The file containing the endpoint function Yes
      function_name string The name of the function the endpoint will route to Yes
      prep_file string The file containing the preprocess functions No None
      prep_function string The name of the preprocess function No None
      commit string Commit sha1 to use No latest
      git_branch string Git branch to use No Default git branch from project's settings
      git_commit string Git commit to use No latest
      desired_percentage integer Traffic ratio for canary rollout No 100 (full transition)
      gunicorn_config List Gunicorn configurations in the following format: ["key=value", "key=value"] No None
      flask_config List flask configurations in the following format: ["key=value", "key=value"] No None
      input_file boolean Does endpoint accepts file No False
      env_setup string The interpreter to use. options: [PYTHON2, PYTHON3, PYSPARK, RENDPOINT]) No EndpointEnvSetup.PYTHON3
      kafka_brokers List List of kafka brokers No None
      kafka_input_topics List List of topics to register as input No None
      queue List Name of the queue to run this job on No None
      kafka_output_topics List List of topics to register as input No None
      model_id string Name of the model id No None
      stream boolean Does endpoint returns output stream No False

      # Update the Endpoint's replica set

      You can update the minimum and maximum number of pods to run the Endpoint on:

      ep.update_replicas(min_replica=2, max_replica=5)
      

      # Rollback version

      If you want to rollback the Endpoint version to a previous one you just need to pass the current version's slug value, for example:

      ep.current_deployment['title']
      3  # current version is 3
      last_version_slug = ep.current_deployment["slug"] 
      ep.rollback_version(version_slug=last_version_slug)
      ep.reload()
      ep.current_deployment['title']
      2  # after the rollback the Endpoint's version is now 2
      

      NOTE

      To fetch the most updated attributes of the Endpoint, use ep.reload()

      # Get sample code

      You can fetch the sample code to query the Endpoint (as shown in the Endpoint's main screen):

      Sample Code example:

      sample_code = ep.get_sample_code()
      sample_code['curl']
      'curl -X POST \\\n    http://endpoint_title.cnvrg.io/api/v1/endpoints/q7veenevzd83rewx...'
      

      # Send prediction

      In order to send a request to a running endpoint and get a prediction, use following command:

      ep.predict(input_params)
      

      # Log metrics

      To log mertics to an endpoint, use following command within the endpoint function:

      ### predict.py
      from cnvrgv2 import Endpoint
      def predict(data):
          ep = Endpoint()
          ep.log_metric("key",0.1)
          return(data)
      

      # Poll charts

      You can fetch a dictionary with data about the Endpoint's latency performance, number of requests and user generated metrics from the Endpoint's charts:

      >>> ep.poll_charts()
      

      # Add logs to a running endpoint

      from datetime import datetime
      ep.log("my first log")
      ep.log(["my first log","my second log"])
      

      Available Parameters:

      Parameter type description required default
      logs array Logs to be added to the experiment Yes
      timestamp timestemp timestemp to be added on No UTC Now
      log_level string Log level. options are: "output", "error" ,"info", "warning" No "info"

      # Set feedback loop

      You can grab all inbound data and feed it into a dataset for various uses, such as continuous learning for your models, for example:

      from cnvrgv2 import Cnvrg
      from cnvrgv2.modules.workflows.endpoint.endpoint import FeedbackLoopKind
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      ep = myproj.endpoints.get("endpoint-slug") 
      ds_slug = "dataset-name"
      ep.configure_feedback_loop(dataset_slug=ds_slug,
                                 scheduling_type=FeedbackLoopKind.IMMEDIATE)
      

      Available Parameters:

      Parameter type description required default
      dataset_slug string slug of the receiving dataset No None
      scheduling_type integer whether if the feedback loop is immediate (for every request) or recurring (for every time interval) (use FeedbackLoopKind.IMMEDIATE or FeedbackLoopKind.RECURRING) No FeedbackLoopKind.IMMEDIATE
      cron_string string Cron syntax string if scheduling type is recurring No None

      Disable the feedback loop:

      ep.stop_feedback_loop()
      

      NOTE

      The data will be automatically uploaded to your dataset under predict/predictions.csv Sample Code

      # Add Continual Learning rules

      In order to set alerts to trigger email notification or flow execution, based on model behaviour in the endpoint, use following command:

      rule = ep.add_rule(
          title="new-tule",
          description="some description",
          action={"type": "email","emails": ["EMAIL"]},
          metric="key",
          operation="lt",
          threshold="1",
          severity="info"
      )
      

      Available Parameters:

      Parameter type description required default
      title string title of the rule Yes
      description string rule description No None
      metric string The cnvrg SDK metric used for the trigger. (Only tags with numeric values are supported) Yes
      threshold float/integer metric value to compare to trigger the alert Yes
      operation string The type of comparison used for comparing with your set value. options are: "gt" (greater than) or "lt" (less than) Yes
      action json Action to occur when the alert is triggered (a json of: type, webhook slug, flow_slug and emails) Yes
      severity string An indication of the importance of this alert (Info, Warning or Critical) Yes
      min_events integer Minimum number of events before triggering action No 1
      frequency integer How often to run condition (in minutes) No 1

      Disable the feedback loop:

      ep.update_rule(rule.slug,is_active=False)
      

      Delete feedback loop:

      ep.delete_rule(rule.slug)
      

      # Control batch Endpoint

      If the Endpoint is of batch type, then you can control it straight from the SDK:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      ep = myproj.endpoints.get("endpoint-slug")
      
      # Check if it is running
      ep.batch_is_running()
      
      # Scale it up or down
      ep.batch_scale_up()
      ep.batch_scale_down()
      

      #

      # Webapps Operations

      # Create a webapp

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      w = myproj.webapps.create(title="mywebapp",
                                templates=["small","medium"],
                                webapp_type="dash", 
                                file_name="app.py")
      

      Available Parameters:

      Parameter type description required default
      webapp_type string The type of webapp to create ("shiny", "dash", "voila", "generic") Yes
      file_name string File name of the main app script Yes (Except Generic type)
      generic_command string The Generic command No
      title string Name of the webapp No None
      templates list List of template names to be used No None
      datasets list List of datasets to connect with the webapp No None
      image object obgect of the image to be used (for example: image=cnvrg.images.get(name="cnvrg", tag="v6.0") No default image from project's settings
      queue string Name of the queue to run this job on No default queue

      Available attributes: You can access the WebApp attributes by using regular dot notation, for example:

      >>> wb.webapp_type
      'dash'
      
      Attribute type description
      webapp_type string The type of webapp ("shiny", "dash" or "voila")
      template_ids List The size of the Dataset
      title int The name of the Dataset
      members List List of collaborators on this Dataset
      category string The data structure category
      description string Description of the Dataset
      num_files int The number of files in the Dataset
      last_commit string The last commit on this Dataset
      current_commit string The current commit on this Dataset object

      # Webapp's slug

      In many commands, you will need to use an webapp's slug. The webapp slug can be found in the URL of it.

      For example, if you have an webapp that lives at: https://app.cnvrg.io/my_org/projects/my_project/webapps/kth1zj9xfh3gfvhfnh5k, the experiment slug iskth1zj9xfh3gfvhfnh5k`.

      # Get webapp object

      Get a specific Webapp by its slug value

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      wb = myproj.webapps.get("webapp-slug")
      

      NOTE

      You can also reference the current running webapp from within its job scope:

      from cnvrgv2 import Webapp
      w = Webapp()
      

      # List all the webapps in the project

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      # sort them by decending order
      wb = myproj.webapps.list(sort="-created_at")
      

      TIP

      sort the list by: -key -> DESC | key -> ASC

      # Delete webapp

      You can delete a WebApp from a project by its slug value

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      wb = myproj.webapps.get("webapp-slug")
      wb.delete()
      
      # Do bulk delete on multiple webapps
      myproj.webapps.delete(['webapp-slug1','webapp-slug2']) 
      

      # Stop running webapp

      Stop a running WebApp by passing its slug value (sync=False by default, also All WebApps must be running)

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      wb = myproj.webapps.get("webapp-slug")
      wb.stop(sync=False)
      
      # Do bulk stop on multiple webapps
      myproj.webapps.stop(['webapp-slug1','webapp-slug2'])
      

      # Share and Permissions

      Share a running WebApp by using share and update_privacy commands

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      myproj = cnvrg.projects.get("myproject")
      wb = myproj.webapps.get("webapp-slug")
      wb.share(public_url_suffix="mysuffix")
      wb.update_privacy(is_public=True) # to make the wb public
      

      or in order to make the webapp only for project scope, the default is false:

      wb.update_privacy(is_public=False)
      

      # Resource Operations

      # Connect your existing Kubernetes cluster

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      mycluster = cnvrg.clusters.create(resource_name="kubernetes_cluster",
                                        kube_config_yaml_path="kube_config.yaml",
                                        domain="https://app.cnvrg.io")
      

      Available Parameters:

      Parameter type description required default
      resource_name string Name of the resource Yes
      kube_config_yaml_path string path to kubeconfig file Yes
      domain string domain url of existing kubernetes_cluster Yes
      provider_name string the provider name (options are: "aws","gke","eks","ics"...) No None
      scheduler string supported schedulers to deploy cnvrg jobs No cnvrg_scheduler
      namespace string the namespace to use inside the cluster No cnvrg
      https_scheme boolean resource supports HTTP/S urls when accessing jobs from the browser No False
      persistent_volumes boolean resource can dynamically create PVCs when running jobs No False
      gaudi_enabled boolean the cluster support HPU devices No False

      # Build managed EKS cluster (Supported on MetaCloud)

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      mycluster = cnvrg.clusters.create(build_yaml_path="aws.yaml", provider_name="aws")
      

      Available Parameters:

      Parameter type description required default
      network string if left blank cnvrg will automatically provision the network for your cluster No istio

      Yaml example:

      name: mycluster
      version: '1.21'
      roleARN: arn:aws:iam::123456789101:role/cnvrg_role
      region: us-west-2
      vpc: null
      publicSubnets:
        - ''
      privateSubnets:
        - ''
      securityGroup: ''
      nodeGroups:
        - availabilityZones:
            - us-west-2a
            - us-west-2b
            - us-west-2d
            - us-west-2c
          autoScaling: false
          instanceType: m5.metal
          desiredCapacity: 2
          minSize: 0
          maxSize: 2
          spotInstances: false
          volumeSize: 100
          privateNetwork: true
          securityGroups:
            - ''
          tags:
            - key: ''
              value: ''
          taints:
            - key: ''
              value: ''
          labels:
            - key: ''
              value: ''
          attachPolicies:
            - ''
          addonPolicies:
            - key: ''
              value: ''
      

      # Get an existing resource

      You can get the resource object by using the resource's slug:

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      mycluster = cnvrg.clusters.get(slug="cluster-slug")
      

      You can also get all of the resources in the organization:

      clusters = [c for c in cnvrg.clusters.list()]
      

      # Update an existing resource

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      mycluster = cnvrg.clusters.get(slug="cluster-slug")
      mycluster.update(resource_name="new-name")
      

      List of optional parameters:

      Parameter type description required
      resource_name string Name of the resource No
      kube_config_yaml_path string path to kubeconfig file No
      domain string domain url of existing kubernetes_cluster No
      scheduler string supported schedulers to deploy cnvrg jobs No
      namespace string the namespace to use inside the cluster No
      https_scheme boolean resource supports HTTP/S urls when accessing jobs from the browser No
      persistent_volumes boolean resource can dynamically create PVCs when running jobs No
      gaudi_enabled boolean the cluster support HPU devices No

      # Delete a resource

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      mycluster = cnvrg.clusters.delete(slug="cluster-slug")
      

      or

      from cnvrgv2 import Cnvrg
      cnvrg = Cnvrg()
      mycluster = cnvrg.clusters.get(slug="cluster-slug")
      mycluster.delete()
      

      # Templates Operations

      # Create a new template

        # Get an existing template

        You can get the template object by using the template's slug:

        from cnvrgv2 import Cnvrg
        cnvrg = Cnvrg()
        cluster = cnvrg.clusters.get("cluster_slug")
        template = cluster.templates.get("template_slug")
        

        # List all existing templates

        List all templates that the current user is allowed to view

        from cnvrgv2 import Cnvrg
        cnvrg = Cnvrg()
        cluster = cnvrg.clusters.get("cluster_slug")
        templates = cluster.templates.list()
        for template in templates:
            print("Template Details: title: {} , slug: {} , cpu: {} , memory: {} "
                  .format(template.title, template.slug, template.cpu, template.memory))
        
        

        # Update an existing template

        You can update the existing template attributes:

        from cnvrgv2 import Cnvrg
        cnvrg = Cnvrg()
        cluster = cnvrg.clusters.get("cluster_slug")
        template = cluster.templates.get("template_slug")
        template.update(title="new title",cpu=3)
        

        Parameters Available for Update:

        Parameter type description
        title string The name of the template
        cpu float Number of CPUs
        memory float Amount of Memory
        gpu integer Number of GPUs
        is_private boolean Does the template are private and not all users have access
        users array the users that can use this template, if private (Administrators have permissions to all compute resources)
        labels string Labels for the node pools the template should use. For example, gputype=v100.To specify several, separate them with commas.
        taints string Taints for the node pools the template should use. For example, value1=NoSchedule.To specify several, separate them with commas.

        WARNING

        If you change the template's status from public to private, you must specify a list of authorized users. Failure to do so will result in an error message indicating that authorization is required. Please ensure that all specified users have the appropriate permissions to access the private template.

        # Delete an existing template

        You can delete an existing template:

        from cnvrgv2 import Cnvrg
        cnvrg = Cnvrg()
        cluster = cnvrg.clusters.get("cluster_slug")
        template = cluster.templates.get("template_slug")
        template.delete()
        

        # Registry commands

        # Create a registry

        To create a registry in the cnvrg environment, use the following command:

        from cnvrgv2 import Cnvrg
        cnvrg = Cnvrg()
        registry = cnvrg.registries.create(title="TITLE", url="URL")
        

        Available Parameters:

        Parameter type description required default
        title string Registry title Yes
        url string Registry URL Yes
        type string Registry type. options are: cnvrg, dockerhub, gcr, acr, ecr, nvidia, other No 'other'
        username string Registry username required for private registries None
        password string Registry password required for private registries None

        # Get a registry

        To retrieve information about a registry, use the following command:

        from cnvrgv2 import Cnvrg
        cnvrg = Cnvrg()
        registry = cnvrg.registries.get(slug="cnvrg")
        print(registry.url) ## docker.io/cnvrg
        print(registry.title) ## cnvrg
        

        # List all registries

        To retrieve all the registries in the AI Studio environment, use the following command:

        from cnvrgv2 import Cnvrg
        cnvrg = Cnvrg()
        registry = cnvrg.registries.list()
        

        # Update a registry

        To update or modify a registry, use the following command with the required combination of options corresponding to the fields you want to modify:

        from cnvrgv2 import Cnvrg
        cnvrg = Cnvrg()
        registry = cnvrg.registries.get(slug="my-registry")
        registry.update(title="new-title")
        

        Available Parameters:

        Parameter type description required
        title string Registry title No
        url string Registry URL No
        type string Registry type. options are: cnvrg, dockerhub, gcr, acr, ecr, nvidia, other No
        username string Registry username required for private registries
        password string Registry password required for private registries

        # Delete a registry

        To delete a registry from the AI Studio environment, use the following command:

        from cnvrgv2 import Cnvrg
        cnvrg = Cnvrg()
        registry = cnvrg.registries.get(slug="my-registry")
        registry.delete()
        

        # Image commands

        # Create an image

        To create an image, use the following command:

        from cnvrgv2 import Cnvrg
        cnvrg = Cnvrg()
        image = cnvrg.images.create(name="cnvrg", tag="v6.0", registry="cnvrg")
        

        Available Parameters:

        Parameter type description required default
        name string Image repository name Yes
        tag string The image tag Yes
        registry string The slug of the registry that the image will be added to Yes
        dockerfile string path to Dockerfile path to build a custom image No None
        custom boolean hether the image is custom (needs to be built with dockerfile) No False
        readme string path to README file No None

        # Get an image

        To retrieve information about an image, use the following command:

        image = cnvrg.images.get(name="cnvrg", tag="v6.0")
        print(image.slug)
        print(image.dockerfile) ## when reffering to an image built from dockerfile
        

        # List all images

        To retrieve all the images in the AI Studio environment, use the following command:

        images = cnvrg.images.list(sort='-id')
        

        TIP

        sort the list by: -key -> DESC | key -> ASC

        # Delete an image

        To delete an image using its name and tag use the following command:

        image = cnvrg.images.get(name="cnvrg", tag="v6.0")
        image.delete()
        

        TIP

        You can also delete an image using its slug instead

        Last Updated: 11/7/2024, 3:31:50 PM